Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chembiochem ; 24(10): e202300034, 2023 05 16.
Article in English | MEDLINE | ID: covidwho-2308421

ABSTRACT

CRISPR-LbuCas13a has emerged as a revolutionary tool for in vitro diagnosis. Similar to other Cas effectors, LbuCas13a requires Mg2+ to maintain its nuclease activity. However, the effect of other divalent metal ions on its trans-cleavage activity remains less explored. Herein, we addressed this issue by combining experimental and molecular dynamics simulation analysis. In vitro studies showed that both Mn2+ and Ca2+ could replace Mg2+ as cofactors of LbuCas13a. In contrast, Ni2+ , Zn2+ , Cu2+ , or Fe2+ inhibits the cis- and trans-cleavage activity, while Pb2+ does not affect it. Importantly, molecular dynamics simulations confirmed that calcium, magnesium, and manganese hydrated ions have a strong affinity to nucleotide bases, thus stabilizing the conformation of crRNA repeat region and enhancing the trans-cleavage activity. Finally, we showed that combination of Mg2+ and Mn2+ can further enhance the trans-cleavage activity to allow amplified RNA detection, revealing its potential advantage for in vitro diagnosis.


Subject(s)
Manganese , RNA , Calcium/metabolism , Molecular Conformation , Magnesium , CRISPR-Cas Systems
2.
Biosens Bioelectron ; 201: 113960, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1633190

ABSTRACT

The outbreak of the COVID-19 pandemic has led to millions of fatalities worldwide. For preventing epidemic transmission, rapid and accurate virus detection methods to early identify infected people are urgently needed in the current situation. Therefore, an electrochemical biosensor based on the trans-cleavage activity of CRISPR/Cas13a was developed in this study for rapid, sensitive, and nucleic-acid-amplification-free detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, a redox probe conjugated with ssRNA is immobilized on the electrode surface modified with a nanocomposite (NC) and gold nanoflower (AuNF) for enhancing the sensing performance. The SARS-CoV-2 RNA is captured by the Cas13a-crRNA complex, which triggers the RNase function of Cas13a. The enzymatically activated Cas13a-crRNA complex is subsequently introduced to the reRNA-conjugated electrochemical sensor, and consequently cleaves the reRNA. A change in current occurs due to the release of the redox molecule labeled on the reRNA, which is trans-cleaved from the Cas13a-crRNA complex. The biosensor can detect as low as 4.4 × 10-2 fg/mL and 8.1 × 10-2 fg/mL of ORF and S genes, respectively, over a wide dynamic range (1.0 × 10-1 to 1.0 × 105 fg/mL). Moreover, the biosensor was evaluated by measuring SARS-CoV-2 RNA spiked in artificial saliva. The recovery of the developed sensor was found to be in an agreeable range of 96.54-101.21%. The designed biosensor lays the groundwork for pre-amplification-free detection of ultra-low concentrations of SARS-CoV-2 RNA and on-site and rapid diagnostic testing for COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Nucleic Acid Amplification Techniques , Pandemics , RNA, Viral/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL